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Continuing the analysis in [l, 21 of the problem of the theory of elasticity in regions of small diameter, 

methods derived from the asymptotic theory for calculating the stiffoesses of cylindrical beams are 

considered, and the results are compared with those of classical theory [3, 41. The technique of two- 

scale expansions [5-g], as formulated in [l], is employed (in this case the averaging methods for 

homogeneous problems are not applicable [9]. It is shown that, if Poisson’s ratio v is constant, the 

stiffnesses of a beam may be computed from formulae derived from the classical theory of plane 

sections, though the local deformations need not generally coincide. If v + coast the stiffoesses differ 

from their classical values. Two-sided estimates are obtained for that case. The classical stiffoesses are 

exact lower bounds. 

The paper by Kozlova [lo] is of some relevance to the questions considered here. 

1. STATEMENT OF THE PROBLEM 

Consider an elastic body occupying a cylindrical region [-1, l]xeS= Q, of characteristic 
diameter ~91. The beam cross-section S is a connected region with smooth boundary. The 
local elastic constants +. are functions of x2/&, x3/e. It has been shown [l] that as E + 0 the 
solution of the problem of the theory of elasticity in Q, tends to the solution of the problem of 
the theory of beams with defining relations 

N, l = &'AFe,, - e3A:,p, + ~~~~,cp’ 

%I =E~~A e If3 11- E44$,Pa + e4%,(P’ 

M = E3Ae, 1 - c4A,$, + E~B’(~’ 

(1.1) 

where e,, is the axial deformation (e,, = VI’, where VI is the axial displacement), p, are the 
curvatures (p, = 24:)” U(O) being the deflections, ct = 2, 3), cp is the angle of twist (cp’ is the 
torsion), N,, is the axia;force, M,, are the bending moments, A4 is the torque, and the prime 

denotes differentiation with respect to x1. 
We will consider the cellular problems (CP) of the theory of beams [l], which is 

<clo8$x7$ +(-l)%#@,,y;-‘)$ =o in s 

(a-X7$ +(-l)A-luti,,y~-‘)np =0 on 8s 
(1.2) 
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The arguments in (1.2) are yz, y, (y = X/E are dimensionless variables), g = a/ay,; 01, j3, y, 
8 = 2, 3; A, B = 1, 2; n = (n,, n,) is the normal to AS. 

The beam stiffnesses are computed using the following formulae [l] 

A; = hill +%ysx:!s) 
A,,a = ( -allllYa +nll$x~,~) 

‘A,p =(Y,+,,,, +a,,&$) 

A& =4Y~(Qil,,Ya +‘ilflx$)) 

BP, = (al I ,aX:a >v #zp = (YpUal~X~,~) 

‘A =‘Az3 -,Aj2, 4 =A& -AL B=B&$, 

(.) = idY#Y3 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

CM 

We have here used X: to denote the solution of the CP representing twisting of the beam [l] 

(%,& + a ,f$,q,Y&j = 0 in s 

(1.9) 

(%s& + %,Q”sY,j )“a =0 on 3s 

where p=3 for p=2 and (j=2 for g=3; s,=O, s,=-1. 
The displacements of the beam, treated as a three-dimensional body, have the following 

form [l] 
“‘~~(X,)+&U~‘~(X,,y)+E2U~2~~X,rY~+... (1.10) 

(y = x / E, v = V(x, ), cp = cp(x, ), uLO’ = u;“)(x, ), uI(O) = 0 (1.11) 

(1) = 
Ul -yauiO" + v, , up y-fp+vvg BP (1.12) 

u1(2) = X,‘l(y)v,’ - y,v; + x:“(y)up’ + X’qy)(p’ 

UC’ = x;‘(y)v,’ + X,2"(y)lp" + X,j(y)cp’ (1.13) 

a,j3=2,3 

Formulae (l.ll)-(1.13) define the local deformations of the beam as a three-dimensional 
body. The terms of order E in (1.10) correspond to the hypothesis of plane sections [3], but the 
stiffnesses are also determined by terms involving the solution of the CP, i.e. by terms of the 
order of E*. 

Henceforth we shall assume that the beam is made from an isotropic material: 

E(l -v) 

% = (l+v)(l-2v) $h, + L(gik6, +6i$jkl 
2(1+ v) 

(1.14) 

(6, is the Kronecker delta). 
It will be seen that the classification in this situation is based on the condition: v = const or 

v + const. 
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2. THE CASE v = coast 

2.1. Tensile stifSness of the beam 

The solution of the CP (1.2) with A = 1 is Xi’ = -vye. Substituting it into (1.3) we obtain 

A:=(E) (2.1) 

which is precisely the formula derived on the basis of the plane section hypothesis. 

2.2. Flexural stiffness of the beam 

The solution of problem (1.2) with A = 2 is (the problem is solved for B = 2, corresponding 
to bending in the 0x,x, plane) 

x22 ,v2i-vy: x,22 =vy,y, 
2 2 2’ 

(2.2) 

As can be verified, if Xp, X,” are given by (2.2), then 

a apy6X;; -au@,, =o 

for any E. The solution of the CP with B = 3 is obtained from (2.2) by interchanging the 
indices 2 2 3. 

Substituting (2.2) into (1.6), we obtain the classical formula 

A& = (EY,JY, > (2.3) 

Here, however, the local deformations of the beam in 
predicted by the plane section hypothesis. 

the cross-section are not those 

We note that, as formula (2.3) holds for an arbitrary beam cross-section S, elongation of the 
region S along one of its axes does not give formulae for the flexural stiffness of a plate. This 
indicates that the expansions in [l] for beams and in [ll] for plates, despite their similarity, are 
essentially different. 

3. THE CASE v + const 

Here it will be shown that the classical formulae are not generally true in the asymptotic 
theory. The conclusions of the asymptotic theory agree with those of the three-dimensional 
theory of elasticity [4]. We shall consider an example in which E is constant, v is almost 
constant and the classical method of small parameters may be used [12]. 

We define the stress function F* [13] by 

$22 = $3, 93 = $29 S23 = S32 = -f$3 

Sap = a*XyAi + (-l)A-‘aclBl,y~-l 

(3.1) 

(3.2) 

In this case the equilibrium equations of the CP (1.2) are satisfied identically, while the 
boundary conditions of (1.2) give 

FA =aFA/an=o on as (3.3) 

Using Hooke’s law (1.14), we deduce from (3.2) that 
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v(l-v2) A 
E F22 + vygA-’ 

v(l-v2) A l-v2 
e,, = - F33+ E 

A-l 

E F:2 + vYB 

e23 = e32 

(3.4) 

where eM = (X$‘+ Xtf)l2 are the deformations, which must satisfy the compatibility condi- 
tion [13] 

e22,33 + e33,22 - 2e23.23 = o 

In view of (3.4), this condition may be written (E = const, A denotes the Laplace operator) 

uwA = [Cl - V2)F$3 - v(1 -V2)$~l,33 +[(l -V2)$* - v(l- V*)F;3]l,22 + 

+2[(1+ V)c;3],23 + E-‘A(vy,A-‘) - 0 B S (3.5) 

Suppose Poisson’s ratio has the form v = v, +&v(l), v, = const, Ml, II v(l) Ii~jjCsj~ 1. 
If 6 = 0, problem (3.5), (3.3) has a trivial solution. The perturbed solution has the form 

FA = 0+6F(‘)A +62F’2)A+... (3.6) 

Substituting (3.6) into (3.5), (3.3) and equating the coefficients of 6, we obtain the following 
problem for F(l)” 

L(v,)F(‘)~ = -+A(v(“y;-I) in s 

F(‘jA = &‘“‘A /an = () on & 
(3.7) 

It follows from the stiffnesses in (1.3), (1.6) and (1.14) and from formulae (3.4) that 

A; = (5 - W% A& = (Y&Y~ - W”*‘)) 

5 
E(l -v) 

= (l+v)(l-2v)* T= 
Ev(1 -v)2 

l-2v 

Using the formula 

(3.8) 

v(1 -v)* 
I-2v = 

v,(l-v,)* 1_2v, +[l+;;~;v+&!~l)+...=*+~&~~~+... 

we obtain expressions for the perturbed values of the quantities (3.8) 

EmesS-EaG(~(‘)‘)-6b2(v(‘)~(‘)‘)-6*a(~’*’*)+... 

E(yayg ) - Ea6(AF(‘)*yp) - i52b(v”‘AF”‘2yg) - 6*a(AF’*‘*y,,)+... (3.9) 

We have retained here terms of order 6’ (see (3.6)). Note that by (3.3) and (3.6), FfijA = 
i#)” /an = 0 on 8, and integration by parts yields 

(M(i)Ay;-‘) = ] F’i’AAy;-1dy2dy3 + 
s 
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#(‘)A 

+I- ypA-‘dy2dy3 
ayA-1 

as an 
- !sF”)” -$+dy, = 0 

Thus, the perturbation of the stiffness, by which they differ from those predicted by the 
classical formulae, are 

gQ,(v(i)@Ay;-i) (3.10) 

Multiplying (3.7) by F(l)’ and integrating by parts, using the boundary conditions for F(‘jA, 
and putting v, = 0, we obtain from (3.10) 

S2(hF(‘)“AF(‘)$ (a$) = (0.0). (191) 

This expression may be non-zero when a = p, 

A TWISTING 

When E = const and v = const, the problem is the same as in classical theory, as may be 
verified using the CP (1.9) and formula (1.7). 

5. ESTIMATES FOR THE STIFFNESSES OF NON-HOMOGENEOUS CYLINDRICAL 
BEAMS 

5.1. Flexural stiffnesses 

As will be evident in what follows, the functionals for computing the beam stiffnesses are 
most naturally evaluated by starting from the three-dimensional CP. The CP for flexural 
stiffnesses (see [l]) is 

hpf~l -ajj’*ja),j =o in P 

(agklX& -$jl,Yabj =O on Y 

,j=alayi; i,j,k,l=1,2,3; a=2,3 
(5.1) 

The function X”(y) is periodic in yi with period 1, and P = [0, l]xS is a three-dimensional 
element of the beam (see Fig. 1). 

The flexural stiffnesses are given by 

Remark. Problem (3.1) has the following solution [l] 

x; = 0, x; = x;(Y2d3) (5.3) 

Substitution of this solution into (5.1) and (5.2) gives problem (1.2) and formula (1.6) 

Conversion of (5.2) into quadratic forms. The reduction of the initial problem to extremum 
problems is fundamental for deriving two-sided estimates [14,15]. We will derive formulae that 
yield the flexural stiffnesses A& as extremum values of certain functionals. 

Multiply Eq. (5.1) by X!, add and integrate by parts over P taking into account the 
boundary conditions of (5.1). This gives 
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Fig. 1. 

Formula (5.2) becomes 

4, =(ya(aijti6,t61rY~ -aijUx~1)6i16jl)P (5.5) 

Subtracting (5.5) from (5.4), we get 

4, = (a@$ -gk1811Ya)(x[j -6i*6jlYf$))P (5.6) 

The relationship between (5.6) and the Lagrange and Castigliano functionals of problem 
(5.1). Let us consider the Lagrange functional J,(X) and the Castigliano functional J,(a) for 
the CP (5.1) [ll, 131 

J,(X) = -bijlly&j)p -~(aijklxi,jxk,l)P 

1 -1 
J,(o) = 5 bj&Pij% >P 

(5.7) 

where the virtual 
stresses [13] (a,) 
are periodic in y, 

displacements [13] X are periodic in y, with period 1 and the admissible 
belong to the set Z = (o@ : (og - ajlly,),, = 0 in P, (oti - aelIy,)nj = 0 on y, oi, 
with period l}. Here (a$) is the tensor mverse to (a,,}. 

_ e__ _ .- 
It is well known that 113,141 

rn? J, (XI = ,“Fx J,, (0) (5.8) 
11 

and problem (5.1) is Euler’s equation for J,(X). Hence it follows from (5.6)-(5.8), after 
transforming for Q = p, that 

mpJ,(X)=-2 b&, --hld)p)=~gJ,(N 
U 

and after some algebra we have the two-sided estimate 

(a&& -6,,611Yct)(xi,j --&$j~Ya))p a AL a (a,I,,Y~)~-(a~~,oiio,,)p 

for any function X periodic in yI with period 1 and any function {crii) E Z. 

(5.9) 
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Estimate (5.9) for cylhhicd beam. For the case in question the set of admissible displace- 
ments X reduces to (5.3), and the corresponding set of stresses is described by the* following 
conditions (it is here that the general tree-Dimensions Cp is used) 

(5.10) 

(CM -“O,altyA 13 = 0 on &s 

where or, = CF,,(Y~~ y3) is any suffi~ie~tiy smooth function, 4, = 4 it = 2, 3. 
Thus, for cyhndrical beams the mi~~~~atio~maxim~~ation region may be reduced to (5.3) 

and (5.10). examining inequality (5.9) in the sets (5.3) and (5.10) we obtain 

(alltrY:)p+(u~Xa.BXy,~)P a AL (5.11) 

ALI 3 {~~~~~Y~~~ -{Q~~~~~~~ -2(~~~~~~~~~~)~ -{~~~*~~~~)~ (5.12) 

on the assumption that X and (aij} satisfy conditions (5.3) and (MO), respectively. 
Noting that o,, in (5.10) is an arbitrary function, one can independently maximize the right - 

hand side of (5.12) as a function of on. To that end it will suffice to solve the problem 

~k+~p~II~P +h11&f + min 

By (5.3), Euler’s equation for this problem is (since ( )P = ( )) 

a&p@ +~;/~p~~ =O 

As a result, G,, = --@$p~ IL=&, and su&stituting this expression into (5.12) we obtain the 
estimate 

(5.13) 

where CF,@ satisfy (5.10). 

An estimate of the stiffnesses for cylindrical domains. Estimates (5.11) and (5.13) are exact 
for the set of admissible functions (5.3) and (5.10) (that is, the minimum of the left-hand side of 
(5.11) and the maximum of the right-hand side of (5.13) are the same), If the test functions are 
selected at random, one obtains &o-sided estimates. For X, take 
that 

X = 0. It follows from (5.11) 

(5.14) 

Take the ad~~ib~e field of displacements to be 

a22 
E 

=a33 = (I*v)(l_2v)vYW 023 =032 =a (5.15) 

Substituting (5.15) into (5.13), after some algebra (noting that 

for y ;e a ), we obtain 



A. G. Kolpakov 

Hence we deduce, using (1.14), that the right-hand side of (5.13) equals (Eyi). Combining 
the last estimate with (5.14), we obtain the following two-sided estimate 

E(l -v) 
(l+v)(l4v)Y~ #CI* WEY3 (5.16) 

As follows from Section 2 above, equality is achieved on the right-hand side of (5.16), e.g. 
when v = const. By Section 3, one can also achieve strict inequality on the right-hand side of 
(5.16). If v # const, we have a representation of the form a(v) = A&,(v,)+ A(v-v,, v-v,). 
The absence of a linear term in the expansion of the averaged characteristics is typical for 
averaging procedures [16, 171. 

the range (i.e. the difference between the upper and lower bounds) in (5.16) is (2v*E(l+v)-’ 
(1- 2v)-‘yz). For materials encountered in practice, 0.2 d v d 0.4 and the range is bounded by 
the number (Eyf). 

5.2. Tensile stiffhesses 

The CP for elongation of the beam is [l] 

(G~~X~,~ -a,jtt),j = 0 in P 

(a&,, -fZijll)nj=O on Y 
(5.17) 

The function X’(y) is periodic in y, with period 1. 
The tensile stiffness is computed by the formula 

One can proceed as before for this formula and the CP (5.17) (see sub-section 5.1), yielding 
the following two-sided estimate for the tensile stiffness of the beam 

5.3. Torsional stiffness 

The CP and the formula for torsional stiffness in the asymptotic theory are similar to those 
of classical theory. As two-sided estimates for the classical cases have already been developed, 
we need not discuss them here. 
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